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This paper aims to shed some light on the physical mechanisms involved in flow- 
induced instabilities of arrays of cylinders in crossflow. In the framework of quasi- 
steady fluid-dynamic thcory, two distinct rncchanisms are discudscd. The first is 
similar but not identical to that associated with classical galloping; i.e. it is a 
negative fluid-dynamic damping mechanism and may obtain even if a single cylinder 
in the array is free to oscillate with only one degree of freedom. Unlike classical 
galloping, it is intimately related to the time delay experienced in the wake structure, 
and hence the fluid forces, adjusting to displacements of the cylinder. The second 
mechanism is similar to wake flutter ; i.e. i t  is controlled by non-conservative fluid- 
dynamic stiffness effects and generally requires relative motion between adjacent 
cylinders in the array, although there is no reason why it should not occur for a single 
flexible cylinder with two degrees of freedom. The two mechanisms generally coexist. 
but each is predominant over different ranges of system parameters. 

1. Introduction 
Arrays of cylinders in various regular geometric configurations and subject to 

crossflow are commonly found in a variety of industrial equipment; e.g. in heat 
exchangers, steam generators, boilers and condensers. It is well known that in 
addition to turbulent buffeting and resonance with wake-related Strouhal-type 
periodicities in the interstitial flow, such arrays are subject to a flow-induced 
oscillatory instability a t  sufficiently high flow velocities (Pai'doussis 1980, 1981, 
1983), commonly referred to as fluidelastic instability. The amplitudes associated 
with the resultant limit-cycle motion are typically large enough to cause inter- 
cylinder clashing and damage to the equipment. It is not surprising, therefore, that, 
from the 1960s on, considerable effort has been devoted to establishing mcans for 
predicting the critical flow velocity for this instability. 

There exist today several semi-empirical and yuasi-analytical theories for 
predicting the onset of fluidelastic instabilities : namely, by Roberts (1966), Connors 
(1970) and Blevins (1974, 1977a,b), Tanaka & Takahara (1981) and Chen (1983u, b ) ,  
Lever & Weaver (1982. 1986a,b),  Pai'doussis et al. (1984, 1985), and Price & 
Pa'idoussis (1984, 1986a, 6).  Discussion of these theories, as well as classifications of 
the theories in different ways, can be found in recent work hy Chen (1987) and 
Pa'idoussis (1987). 

Obviously, in each theoretical model a more or less clear explanation is given of thc 
various elements of the fluid-dynamic forces incorporated in the analysis ; somctimes, 
an assessmcnt is also provided of their rclative importance in precipitating the 
instability. Thus, of particular significance to the present work is the finding (Chen 
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1983a, b ;  Price & Pa'idoussis 1984) that fluidelastic instability is controlled (i) by 
negative fluid-dynamic damping forces for low values of the mass-damping 
parameter a&, where = m/pD2,  m being the cylinder mass per unit length and D 
its diameter, 6 the in vacuo logarithmic decrement of damping and p the fluid density, 
and (ii) by fluid-dynamic 'stiffness ' terms, i.e. by a displacement-controlled 
mechanism, for large values of a&. 

Nevertheless, what is missing is a relatively simple and clear physical explanation 
as to what are exactly the fluid-dynamical mechanisms causing fluidelastic 
instability, beyond the general statement that they are related to negative damping 
and/or non-conservative displacement-dependent fluid-dynamic forces. Also missing 
is a discussion of the relationship between this instability and other, long established 
and better understood phenomena in aero/hydroelasticity, such as galloping, for 
instance. The purpose of this paper is to attempt to do just that. For convenience and 
ease of interpretation of the results, this will be done in the context of quasi-steady 
fluid-dynamic theory. 

2. Modified quasi-steady theory 
Consider an array of cylinders, a portion of which is shown in figure 1 ( a ) ,  subjected 

to crossflow. For simplicity, consider for the moment that all the cylinders are rigid, 
except one, which is flexibly mounted and motions of which are characterized by the 
displacements x and y. 

Then, assuming no mechanical coupling between motion in the x- and y-direction, 
the equation of motion of the cylinder in the y-direction may be written as 

mly + cy + ky = F,, ( 1 )  

where F, is the fluid-dynamic force, 1 the length of the cylinder, and c and k are the 
effective mechanical damping and stiffness of the cylinder, respectively. 

According to quasi-steady (or quasi-static) theory the forces acting on the 
oscillating cylinder are approximately the same as the static forces at each point of 
the cycle of oscillation, provided that the approach velocity is properly adjusted to 
take into account the velocity of the cylinder, in the manner shown in figure 1 (b ) .  
Thus, F, may be written as 

F, = - tpU: ZD{C, cos ( - a )  - C, sin ( - a)} ,  

U, = [ ( ~ - - ~ ) 2 + ~ 2 1 ~ ,  -u = sin-1 (Y/Ur)  ;t 

(2) 

where U, and a are defined in figure 1 ( b )  and given by 

C, and C, are the static lift and drag coefficient, respectively, which for small 
motions about the equilibrium position may be expressed in linearized form as 

and similarly for C,. Then, ( 2 )  may be linearized to give 

F, = +pU21D [ - 2CL0 (g) + r2) x + r$) y-CD0 ($)I. (3) 

t This peculiar definition of a is for the sake of consistency with Den Hartog's (1932, 1956), 
which is useful when the two analyses are compared later on. 
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FIGURE 1. (a )  Cross-sectional view of a small part of an array of cylinders in crossflow ; 
(b )  velocity vector diagram. 

For a regular symmetric geometrical pattern of the cylinders, such as shown in 
figure 1 (a) ,  CL0 = 0 and aC,/ax = 0. Hence, (3) simplifies to 

F, = &ZJ21D[(%)y-CDo(R)]. (4) 

The discussion so far has been in terms of traditional quasi-steady fluid-dynamics. 
It is known, however, that there is a time-lag between cylinder displacement and the 
fluid-dynamic forces generated thereby. This may be thought to be related to the 
delay in the two fluid streams on either side of the cylinder readjusting to 
the changing configuration as the cylinder oscillates (Lever & Weaver 1982); 
alternatively, i t  may be thought to be associated with the retardation that the fluid 
experiences as it nears the cylinder, notably in the vicinity of a stagnation point, in 
conjunction with inter-cylinder positions having meanwhile changed as a result of 
cylinder motions (Simpson & Flower 1977; Price & Paiiloussis 1984, 1986a,b). 
Perhaps this time-lag may most easily be conceived as a delay in the viscous wake 
adjusting continuously to the changing conditions imposed by the vibrating cylinder 
(Paydoussis, Mavriplis & Price 1984). As a first approximation, this time-delay, 7, 
may be expressed as 

where ,u - O(1) (Price & Pa'idoussis 1984).t Hence, taking this effect into account, 
and assuming harmonic motions, such that y = yo exp (iwt), equation (4) may be 
written as 

7 = ,uD/U, ( 5 )  

3. The negative damping mechanism 
Equations (1) and (6) may be combined and re-written in the form 

where wo is the radian natural frequency of the cylinder and 6 its logarithmic 

t This is an elementary approximation, as compared to those in more highly developed areas of 
fluid-elasticity, e.g. unsteady fluid dynamics and stall flutter of aerofoils (Bisplinghoff, Ashley & 
Halfman 1955; Ericsson & Reding 1988). It should be remembered, however, that  when bluff 
bodies are involved the fluid dynamics is considerably more difficult t o  deal with than for 
aerofoils. 
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FIGURE 2. Stability diagram for a rotated triangular array with pitch-to-diameter ratio 1.375 (see 
elemental par t  of the array on the upper left-hand corner). Xechanism I refers t o  the negative- 
damping one-degree-of-freedom mechanism (§  3) ; mechanism I1 refers to  the two-degree-of- 
freedom ‘wake-flutter’ mechanism (995 and 7 ) .  Region 1 is where CJloD is small enough for 
sin (oD/L’) =+ w D / U ;  region 2 is where sin ( w D / U )  c oD/U; region 3, for larger U l w D ,  is where 
both mechanisms I and I1 contribute to  the instability. 

decrement (both in vacuum). For harmonic motions, utilizing ( 5 ) ,  the total damping 
term is found to be proportional to 

Clearly, if the total damping becomes negative, then oscillations will be amplified ; 
i.e. an oscillatory instability will arise. At the threshold of instability, say a t  
U = U,, the total damping will be zero. 

If U/,uuwD is sufficiently large (,uwD/U small) for the sine to be approximated by 
its argument, then setting cxprcssion (8) to zero yields 

where f ,  = w0/27c. For obvious reasons, it is implicitly assumed that U ,  > 0 and, 
hence, fluidelastic instability will occur provided that 

-c,o-puD(ac,/ay) > 0;  (10) 

since CD0 > 0 generally, this implies that instability will arise only provided that 
X J a y  be sufficiently large and negative -which docs in fact occur for many cylinder 
arrays, but not for all (Price & Pa’idoussis 1986b). Solutions given by relation (9) are 
shown in region 2 of figure 2. 

It is important to notice the similarity of relation (10) to Den Hartog’s (1932, 1956) 
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criterion for galloping of iced overhead electrical conductors. In its original form this 
is given by 

CDo+- ac, < 0; 
aa 

however, if a time delay between conductor motion and lift force, of the same form 
as ( 5 ) ,  is accounted for, then the Den Hartog criterion may be re-written as 

CDo + Re [ePiwT aC,/aa] < 0. (12) 

Of course, in classical quasi-steady theory, r = 0 and thus (11) and (12) are 
identical. 

Now, if y is expressed as a function of a, namely y = - (U/iw) a, then aC,/aa may 
be re-written as - (U/iw) (aC,/ay) ; so, assuming wr to be small and r to be given by 
( 5 ) ,  inequality (12) may be expressed as 

which is exactly the same as inequality (10). 
Several important insights may be gained by consideration of relations (9) and 

(lo), as follows. 
(i) It is obvious that if there were no time delay, i.e. ,u = 0, no oscillatory 

fluidelastic instability could arise. This agrees with the results obtained previously 
by Price & Pa’idoussis (1984, 1986b) and Pa’idoussis et al. (1984).t It is also true in 
Lever & Weaver’s theory (1982, 1986a, b) ,  although not explicitly stated. The only 
possible form of instability in such a case would be a static divergence (Pa’idoussis 
et al. 1984), which will be discussed in 54.2 

(ii) For small values of U/wD, the approximation of the sine function by its 
argument is no longer valid; setting the transcendental expression (8) to zero admits 
an infinite set of solutions for neutral stability, as the sine oscillates between - 1 and 
1. Some of the solutions represent the threshold from stability to instability, and 
some the reverse. Thus this leads to a spectrum of stable and unstable zones as 
U / f o  D is increased, as obtained by Lever & Weaver (1982, 1986a, b) ,  Chen (1983a, b )  
and Price & Pa‘idoussis (1984, 1986a, b) .  It is of interest that in such cases instabilities 
may arise not only for aC,/ay negative, but also positive and large. Typical solutions 
from the full form of expression (8) are presented in region 1 of figure 2. 

(iii) The threshold of instability according to the approximations leading to (9) is 
insensitive to the frequency of oscillation in the fluid medium concerned( w ,  
depending only on the in vacuo frequency, wo (and hence f o )  - something that has 
perplexed researchers in the past (see discussion by Pa’idoussis 1980, 1983 for 
example). 

t Price & Pai’doussis’s (1984, 19866) analytical models show that one-degree-of-freedom flutter 
is dependent on the existence of a time delay between cylinder motions and fluid-dynamic forces 
generated thereby. As the present work represents a simplification of these models towards 
facilitating an understanding of the nature of fluidelastic instability, it is not surprising that there 
is agreement with the present work in this crucial aspect. PaYdoussis et d . ’ s  (1984) analytical model 
is fundamentally different, in that all fluid-dynamic forces are derived by potential flow theory, 
ignoring the existence of wakes ; significantly, oscillatory instabilities are predicted to occur only 
when a phase lag between cylinder motions and fluid-dynamic forces is heuristically introduced (to 
account for viscous, wake-related effects, as mentioned earlier). 
1 Of course, all statements made in (i) apply only to cylinders of circular cross-section, where the 

lift coefficient does not vary with the angle of attack. 
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( iv)  The foregoing discussion is associated with y-direction motions. Proceeding in 
a similar manner for x-direction motions. it is found that for small wD/U,  

so that for instability 
- 

must be satisfied. Although aC,/ax < 0 often arises in several array configurations 
(Price & Pai‘doussis 1986b), it is generally smaller in magnitude than laCL/ayl, 
implying that the threshold of instability is more likely to be associated with y- 
direction motions. as observed experimentally. For larger wD/U,  as for y-direction 
motions, multiple zones of instability may arise ; furthermore, the instability may 
also be associated with aC,/ax positive and large. 

(v )  According to relationships (9) and (13),  U,/fo D is proportional to mS/pD2,  or 
m S .  This appears to be correct in terms of experimental observations, in the middle 
range of m8 (region 2 of figure 2 ) .  For sufficiently high W L ~ ,  however, characteristic of 
gaseous flows, experimental evidence suggests that either U J f 0  D cc (ma)$ or 
cc masb, where a + b and a ,  h < +, but certainly not cc m8. This is related to the 
increasing importance of thc second mechanism associatcd with fluidelastic 
instability, to be discussed in $5. 

4. Divergence instability 
Examining (7) ,  it may be verified that a single flexible cylinder in the array may 

become unstable by divergence (non-oscillatory static instability) if the stiffness 
term vanishes, which occurs, for wD/U sufficiently small, a t  U = U,, given by 

in the y-direction ;t similarly for the x-direction, with aC,/ax replacing aC,/ay. This 
implies that for divergence, either aC,/ay or aC,/ax must be positive, which is 
opposite to the normal requirement for oscillatory instability. Hence, arrays subject 
to the usual, oscillatory fluidelastic instability will not be prone to divergence. As 
most types of cylinder arrays are subject to oscillatory fluidelastic instability, it  is 
perhaps not surprising that no experimental observation of divergence has ever been 
reported. However, very recently and evidently for the first time. divergence has 
been observed by the authors and co-workers in a rotated square array with pitch- 
to-diameter ratio of 1.5 and is reported here for the first time. Significantly, this 
array was found to be resistant to the normal, oscillatory fluidelastic instability, a t  
least for a single flexible cylinder in the array (Price & Pai’doussis 1986b). 

The mechanism of divergence is the same as that of buckling of a column subjected 
to axial load; if, when the column is flexed, the load-related lateral force exceeds the 
flexural restoring force, then the system behaves as if it had a negative net stiffness. 
For the problem at  hand, writing wf = keff/m, the restoring force is clearly 

t This expression is really independent of the mass of the cylinder. as may easily be verified and 
as it should he. The way it is written, however, in terms of the ‘standard’ non-dimensional groups, 
makes it appear otherwise. 
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FIGURE 3. Wake flutter of a leeward electrical conductor in the wake of another, showing a 
typical trajectory during flutter. 

proportional to  k,, ,y,  while the lift-related force (for COSWT z 1)  is proportional to 
~pU2ZD(i3C,/i3y)y; hence, if aCL/i3y is positive, i.e. if tJhe lift increases with lateral 
displacement, then, for sufficiently large U ,  the latter term will become larger than 
the restoring term, precipitating divergence. 

5. The wake-flutter mechanism 
This mechanism has been studied extensively in connection with instabilities of 

bundles (or clusters) of overhead transmission lines (typically involving two or four 
wires) subjected to transverse wind, commonly referred to as sub-span oscillations 
(Simpson 1971; Price 1975; Simpson & Flower 1977). 

Suppose that a leeward conductor undergoes an oval motion, as shown in figure 3, 
in the wake of a windward conductor. The flow-field being viscous and hence the 
force field on the moving conductor non-conservative, energy may be gained from 
the fluid, or lost to it, in the course of a cycle of motion. In  the former case, the 
oscillatory motion will be amplified; i.e. an instability will arise. This mechanism, in 
its ' stripped down ' form is purely a displacement-dependent or stiffness-controlled 
mechanism, in contrast to that  of $3, which is predominantly a velocity-dependent 
(or negative damping) mechanism. 

A characteristic of this mechanism is that a t  least two degrees of freedom must be 
involved in the motion (in the foregoing example, motions in the x- and y-direction 
of one conductor) ; alternatively (and more typically for cylinder arrays), motions of 
adjacent cylinders in either direction may be involved. 

To appreciate how this instability arises, an elementary system of two flexible 
cylinders will be considered. Although the system has four degrees of freedom, the 
mathematical model to be considered will only have two. This is because it has been 
shown previously (Price & Pai'doussis 1984) that, a t  the onset of instability, motions 
are predominantly in one direction (in the x-direction for a double row of flexible 
cylinders, and in the y-direction if this same double row is part of a larger, otherwise 
rigid array of cylinders) ; similarly, in the case of overhead transmission lines, it is 
often assumed that only the leeward conductor is free to oscillate (in both the x- and 
y-direction). Hence, two degrees of freedom are sufficient to capture the essential 
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physical features of the instability. Thus, the coupled equations of motion of the 
system may be written as follows : 

([W+[Mlf){Z1+ ~ [ ~ I + r ~ l , ) ~ i ~ +  ([Kl+[KIf){Z} = (01, (16)  
where the unsubscripted matrices are associated with the mechanical system 
and those with SUEX fare associated with the fluid-dynamic terms ; {z} is the displace- 
ment vector, so that for motion of two cylinders in the y-direction, for instance, 

Concerning the mechanical system itself, the following set of demonstrably 
reasonable and, for heat exchanger arrays, realistic assumptions are made : the modal 
masses, as well as the mechanical and damping terms, are equal in the two degrees 
of freedom concerned ; also, there is no mechanical coupling between the two degrees 
of freedom. Thus, M,, = M,, = ml; C,, = C,, = c ; K,, = K,, = k ; and all off-diagonal 
terms in the mechanical matrices are zero. 

Concerning the fluid-dynamic matrices, a set of, a t  first sight, more tenuous 
assumptions are made, which are nevertheless justifiable a posteriori, some by 
numerical computations, as will be discussed in the next paragraph: (i) the flow 
retardation (time-delay) terms are entirely removed ; (ii) the virtual (added) mass 
terms are neglected; (iii) the fluid-dynamic damping terms are neglected, as 
compared to the mechanical damping terms. Thus, (16) is simplified to 

{z> = {y,, yJT. 

(17) 
[mz o]{Z}+[i :]{i)+[, k 0  k]{z}+&UzZDIK1l K12]{z}  = { O } ,  

0 ml K21 K22 

where z is either x or y, and the K~~ are of the form -aC,/az,, in which C, stands for 
either C, or C ,  accordingly to whether z = x or y. 

The removal of the flow retardation terms (p = 0) ensures that the generator of the 
negative-damping mechanism discussed in $ 3  is removed, so that instability, if it can 
arise a t  all, will have to be due to some other mechanism. Assumption (ii) above is 
justified partly for simplicity and partly because the mechanism under discussion is 
dominant for gaseous flows, where virtual mass effects are negligible. The ratio of the 
fluid-dynamic to the mechanical damping terms (with flow retardation removed) 
may be shown to be ( C D 0 / 4 ~ 8 )  ( f D / U )  and ( C D 0 / 2 ~ s )  ( f D / U ) ,  respectively for 
motions in the y- and x-direction (Price & Pa'idoussis 1984, 1986a). Clearly, if 
instability occurs a t  sufficiently large values of U / f D ,  these ratios become small, 
typically 1/40 and 1/20, respectively, and the fluid-dynamic damping may be 
neglected ; hence assumption (iii) is justified. 

Let us now consider the dynamical implications of the form of the simplified 
equation of motion (17).  Introducing the notation 7 = z /D ,  t = w,t ,  the equation of 
motion may be written in dimensionless form as follows: 

where i7 = U / o ,  D ,  fi% = m/pD2,  Kii = D K ~ ~  and ( )' = d/dt. 

equation is given by 
Assuming harmonic solutions of the form t , ~  = lo exp (hi), the characteristic 

h4 + 14 h3 + [ 2  +(:y + (g) +i,,)] h2 

+ - 2 +  - ( K 1 1 + K 2 2 )  A+ 1 + - ( K l 1 + K Z 2 ) +  - ( K 1 1 K 2 2 - K 1 2 K Z 1 )  = 0. [C){ (:;) 11 [ (:;) (:;I 1 
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The condition of zero total damping, i.e. the boundary of an oscillatory instability, 
may be obtained by application of the Routh criterion, or 

PlP2P,-P,P:-POP; = 0, 

where the pi are the coefficients of A'. This leads to the following quadratic expression 
for U 2 / 2 m :  

In  general, the solution to this equation is cumbersome, but, if ( 2 ~ / 6 ) [ ( k , , - ~ ~ ~ ) ~ +  
4 ~ ~ ~ ~ ~ ~ ] ~ / ( k , ~ + ~ ~ ~ )  is sufficiently small compared with unity (which is the case for 
small enough a), then an approximate solution of relatively simple form may be 
obtained, i.e. 

where it was assumed that a real 0, exists ; in more conventional terms, this equation 
may be written as 

Furthermore, for cylinders deep enough in the array (i.e. away from the first or last 
few rows) cll = kz2 ,  and equation (20b)  may be simplified further to 

Despite the simplifying assumptions leading to equation ( ~ O C ) ,  i t  does give results 
in excellent agreement with those obtained from the complete set of equations, as 
discussed in $36 and 7. Three important conclusions may be drawn directly from 
equations (20)  : 

(i) for instability to occur, the stiffness matrix should not only be asymmetric 
( K ~ ~  =I= K ~ ~ ) ,  but the signs of the off-diagonal terms must be opposite; 

(ii) the dependence of Uc/fo D on the mass-damping parameter is that  of a square- 
root relationship, rather than a linear one as was the case for the one-degree-of- 
freedom negative-damping mechanism discussed in $3  ; 

(iii) if the diagonal terms kll and k2, are unequal, this leads to an increase of 

The requirement in (i) above is often met in practice. Thus, for a so-called rotated 
triangular array with pitch-to-diameter ratio p / D  = 1.375 (see figure 4), measure- 
ments have given K,, = - D(i3CLl/ay2) = 16.7 and kzl = - D(i3CLz/i3y,) = - 26.6, 
where cylinder 1 is in one row and cylinder 2 is diagonally adjacent to it in the row 
immediately upstream, as shown in figure 4. 

Physically, the non-equality of K12 and kzl is an attribute of the non- 
conservativeness of the system. Thus, if instead of fluid-dynamic coupling there were 
mechanical coupling involving springs, then the forces could be derived from a 
potential function and clearly k,, = k,, would have been obtained: the force on 
cylinder 1 due to motion of cylinder 2 is equal to the force on cylinder 2 due to motioli 
of cylinder 1, in the same directions. This is the well-known reciprocity principle in 
solid mechanics. Significantly, if the flow field is modelled as a purely potential flow 
(Pai'doussis et al. 1984) then the fluid-dynamic stiffness matrix obtained analytically 

UC/fO D. 
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FIGURE 4. Part of a rotated triangular array, showing representative cylinders 1 and 2, as well as 
the pattern of motion during flutter; motions in adjacent rows are 90" out of phase. 

is symmetric and, hence, the instability cannot materialize. In  reality, of course, the 
flow-field is rotational with separated viscous flow regions (the existence of the 
wakes cannot be overlooked), and it is because of this that  kla $. kzl and, indeed, that 

Another attribute of the viscous, rotational nature of the flow field and the non- 
conservativeness (asymmetry) of the stiffness matrix is that  the energy derived from 
the flow is path-dependent; i.e. the phase in the motions of the two cylinders is of 
importance, as in Connors' (1970) mechanism, which is fundamentally the same as 
that described above. Indeed, comparing equations (20 b, c) to Connors' expression, 
U,/f,, D = K(rn&/pD2)i ,  where K is an experimentally determined constant, the 
similarity becomes self-evident. Also, the expression obtained by Blevins (1977 b ) ,  
who generalized Connors' model, is in fact identical to the simplified expression 
derived here, equation ( ~ O C ) ,  although the notations differ. Nevertheless, it is 
believed that in the development presented here the assumptions made are justified 
more clearly, and hence the limitations involved are delineated more systematically ; 
moreover, this mechanism is considered in a unified manner, together with the 
negative-damping one-degree-of-freedom mechanism presented in 3 3, which is not 
considered a t  all in the Connors-Blevins work. 

klzK21 < 0. 

6. Dependence of the wake-flutter mechanism on mechanical damping 
An apparent paradox in the results obtained for the wake-flutter mechanism is 

that the critical flow velocity is proportional to the square-root of the logarithmic 
decrement of mechanical damping, 6. This contrasts to the results normally obtained 
for classical coupled-mode flutter instabilities, where the effect of mechanical 
damping is so insignificant, that  it is usually ignored; see for example Bisplinghoff, 
Ashley & Halfman (1955) for the flutter analysis of aircraft wings, and Simpson 
(1971), Price (1975) and Price & Piperni (1986) for analyses of overhead transmission 
bundles. 

To resolve this paradox i t  should first be realized that in the aforementioned 
classical aeroelastic analyses, the two modes, associated with the two degrees of 
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FIGURE 5.  The effect of differences in the in-vacuo modal stiffnesses, h, in the two-degree-of-freedom 
system of $95 and 6 on the functional relationship between UJf0 D and 8. Rotated triangular array 
(pitch-to-diameter ratio p / D  = 1.375, fii = lo5). 

freedom involved, have distinct (non-equal) natural frequencies under ‘ wind-off ’ (or 
in wacuo) conditions. Thus, the mechanical stiffness matrix in (17) may in this case 
be written as 

where h represents the difference in modal stiffness in the two degrees of freedom. The 
second point to realize is that even small values of h can have a profound effect on 
the relationship between U J f ,  D and 6, as will presently be shown. 

Consider the same rotated triangular array, associated with figures 2 and 4. 
Solutions of (17),  but with the mechanical stiffness as given by (21), were obtained 
for various values of h and are shown in figure 5 .  It is seen that for h = 0, i.e. when 
the two modes have equal frequency, U,/f, D is sensibly proportional to d, and the 
solution is very closely approximated by (20c). However, even for h = 0.05, which 
corresponds to a 2.5 % difference in natural frequencies, the functional dependence 
of Uc/fo D on 6 is entirely different: for 6 < 0.02, U J f ,  D is insensitive to 6. For 
h = 0.2, this effect extends to 6 < 0.10. 

This resolves the apparent paradox referred to a t  the beginning of this section and, 
in this respect, reconciles the difference in dynamical behaviour of cylinder arrays 
and overhead transmission lines. However, it is also of direct interest to the dynamics 
of arrays, in heat exchangers for example, where in the so-called U-bend region 
there exist substantial differences in natural frequency of adjacent cylinders. It is 
important to be aware that this ‘detuning’ of adjacent cylinders leads to a 
considerable reduction in the efficacy of raising the threshold for fluidelastic 
instability by means of increased mechanical damping. 
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rn&/pTj2 1 0 5  1 0 4  1 0 3  1 0 2  
U,.jfo n 
'full solution ' 236 70.4 17.3 2.91 
ri.,/j0 r) 
'simplified solution ' 244 77.9 24.7 1.79 

TABLE 1.  Comparison between the critical flow velocities for fluidelastic instability obtained via (i) 
the full. constrained-mode solution and ( i i )  the simplified solution of (20) and ( 2 2 ) ,  for a rotated 
triangular array with p / T )  = 1 375, and S = 0.01 throughout. 

7. Wake-flutter stability boundaries for cylinder rows 
Of course, the results of $5  may be applied directly by considering a system of two 

flexible cylinders in an array of otherwise rigid ones. Numerical results were obtained 
in this manner and were found to be similar to those to be discussed below, which 
were obtained by a generalization of the foregoing, whereby the results are more 
representativc of the stability of a fully flexible array. This is done by considering an 
infinitely long double-row of flexible cylinders, within a larger array of rigid 
cylinders. 

I t  is realized a t  the outset that, realistically, all the cylinders in the array are fluid- 
dynamically coupled in a chain-like manner, so that the correct choice of a two- 
cylinder ' kernel ' representative of the array should take this fact into consideration, 
as well as the relative phase in the motions of cylinders in the same row ; this leads 
to the so-called ' constrained-mode solution ', as described by Price & Pa'idoussis 
(1986 a ) ,  whereby the analysis of the two-cylinder kernel becomes representative of 
an infinite array of flexible cylinders. It is shown that this results (Price & Pa'idoussis 
1986a) in 

where the S can take on the values of 1 ,  0 or - 1 ; similarly if the I? involve C,  and 
x. If S, = S, = 1 ,  this signifies that  cylinders in the same row are presumed to move 
in phase; if they are equal to - 1, then in antiphase. All possible S are utilized and 
the minimum U / f D  obtained thereby is considered to be the critical one; 
significantly, the same set of 6 is found to give the best agreement with the full, 
unconstrained analysis of multi-degree-of-freedom long rows of flexible cylinders 
(Price & Pa'idoussis 1984). In  the rwults to  be presented in what follows, this is 
achieved with 6, = S, = 1. 

Solutions obtained by (18) and ( 2 2 )  are represented in region 3 of figure 2, marked 
as due to mechanism 11. Of course, in general, both mechanisms I and I1 are a t  work, 
i.e. both the single-degrec-of-freedom negative damping mechanism of § 3 and the 
stiffness-controlled mechanism discussed hcre. The results obtained by the full 
solution of the equations of motion, without the introduction of the simplifications 
leading to (17) ,  are also shown in region 3 of figure 2, marked as due to both 
mechanisms I and 11. 

The results shown in table 1 give numerical comparisons of the critical flow 
velocities obtained by the full constrained-mode solution of the equations of motion 
to the 'simplified solution ' according to (20) and (22). It is clear that, for large values 
of m (and hencc ma), there is not much difference between the two; this signifies that 



Instabilities of arrays in crossjlow 57 

the instability is predominantly due to the position-dependent 'wake-flutter ' 
mechanism discussed here. As rn is diminished, however, the differences become more 
pronounced, indicating the increasing contribution of the negativc-damping one- 
degree-of-freedom mechanism (mechanism I) to the destabilization of the system. 

The instability in table 1 involves y-direction motions (see figure 4), where motions 
in adjacent rows are 90" out of phase. If, instead, an array of only two rows is 
considered, then the instability is found to involve predominantly x-direction 
motions. Indeed, in principle, there is no a priori reason why wake-flutter 
instabilities in some arrays should not involve only one flexible cylinder in the array 
instead of two, the two requisite degrees of freedom being associated with x- and y- 
motions of the cylinder. 

8. Conclusion 
The foregoing work represents an attempt to  elucidate the mechanisms underlying 

fluidelastic instability of cylinder arrays in crossflow, as well as providing links to the 
well-known classical galloping and two-degree-of-freedom wake-flutter mechanisms. 

It is shown that, provided the mass-damping parameter md is sufficiently small, 
the instability is a modified form of the galloping mechanism first proposed by Den 
Hartog for the observed limit-cycle motions of iced transmission lines. The essence 
of the difference between this 'classical ' galloping and what occurs in cylinder arrays 
is that in the latter ease the mechanism is intimately connected with a t'ime delay, 
which is associated with the time taken for the wake flow to adjust to cylinder 
motions. Nevertheless, the mechanism is fundamentally similar to classical galloping, 
in that it involves but one degree of freedom and is associated with negative fluid- 
dynamic damping overcoming the positive mechanical damping of the cylinder. 
Thus, stability boundaries in this case may be obtained by considering motions of a 
single cylinder in the array in one direction, while adjacent cylinders are assumed to 
be immobile. 

This is the mechanism of instability predominating in regions 1 and 2 of figure 2 .  
Stability boundaries may be obtained by satisfying expression (8) set to zero for y- 
motions, or the equivalent one for x-motions. If U l w D  is sufficiently large, then 
stability boundaries may be obtained by the even simpler relations ( 9 )  or (lo),  or the 
equivalent ones for x-motions. This mechanism is the one recognized by Chen 
(1983a,b) and Price &, Pai'doussis (1984, 1986a,b) as the dominant mechanism of 
instability for sufficiently small @id and by Lever & Weaver (1982, 1986a,b) as 
exclusively operative irrespective of a d .  

The objective of this paper was to elucidate, rather than predict, the instability. 
In  this respect, i t  should be stressed that setting expression (8) to  zero is not suficient 
for predicting instability, in that CD0 and aC,/ay cannot a t  present be predicted 
analytically, but must rather be obtained empirically. 

I n  the higher range of m8, region 3 of figure 2, a second destabilizing mechanism 
comes into play ; for sufficiently high m d  this mechanism becomes predominant, while 
the foregoing one contributes less. This is a position-dependent, fluid-dynamic 
stiffness-controlled mechanism, similar to that of wake flutter, long known to be 
responsible for the so-called sub-span oscillations of bundled electrical transmission 
lines. This mechanism requires a t  least two degrees of freedom of a system, and has 
been demonstrated here in terms of y- or x-motions of two adjacent cylinders in the 
array. It is intimately related to the fluid-dynamic coupling between motions in these 
two degrees of freedom, which, because of the rotational and viscous nature of the 
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flow-field, does not-exhibit reciprocity, as would be the case if coupling were of a 
mechanical nature. In  matrix notation the coupling manifests itself in non-zero off- 
diagonal fluid-dynamic terms, which arc not cqual because of the non-conserva- 
tiveness of the flow-field and hence of the system as a whole. 

Based on a set of reasonable assumptions, the problem was simplified and it was 
possible to obtain simple relationships for the onset of instability according to this 
second mechanism, equations (20). It was found, a posteriori that  these relationships 
are similar to that obtained previously by Connors (1970) and, in their simplest form, 
identical to that obtained by Blevins (1977 b).  The dominance of this mechanism for 
high m8 was recognized in Chen’s (1983a,b) and Price & Pa’idoussis’s (1984, 
1986a, b )  work. 

Significantly, the dependence of U , / f ,  D on %8 is found to  be different in different 
ranges of the latter parameter, as shown in figure 2, and in agreement with 
experimental observations (see Price & YaYdoussis 1986a, b, for example). For low 
values of m8 the principal instability boundary is insensitive to a8 (region 1 of figure 
2 ) ,  although a set of secondary instability zones exists below that boundary. In  the 
middle range of %8, U,/f ,  D depends more or less linearly on that parameter (region 
2 ) .  Finally, for sufficiently high m8, U J f ,  D depends on the square-root of m8 (region 
31, an attribute of the wake-flutter mechanism. These are of course generalizations ; 
quantitatively, the extent of these three regions depends on the geometry of the 
array and, for regions 1 and 2 ,  not only on the product m8, but also on the specific 
values of FE and 8 - two independent dimensionless parameters which are only 
combined by convention and sometimes for convenience. 

In  some ways, the work in this paper is similar to Nakamura’s (1978) attempt to 
classify and clarify the various types of wind-induced aeroelastic instabilities to 
which bridge decks may be subjected : notably, ‘single degree of freedom (torsional) 
flutter’, corresponding to  the classical Den Hartog type galloping in this paper, and 
‘ classical flutter ’ involving two interrelated degrees of freedom and corresponding 
here to wake flutter; as well as an ‘intermediate type of flutter’, where both 
mechanisms make a contribution. The authors are grateful to an anonymous referee 
for bringing this paper to their attention. 

The authors gratefully acknowledge the support of the Natural Sciences and 
Engineering Research Council of Canada and Le Fonds FCAR (Formation des 
chercheurs e t  Aide a la recherche) of Qudbec. 
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